X
تبلیغات
علمی

علمی

انواع دماسنج ها و طرز کار آنها

انواع دماسنج ها و طرز کار آنها ( Thermometer )
تاریخچه:
نخستین وسیله واقعی علمی را برای اندازه‌گیری درجه حرارت در سال ۱۵۹۲ گالیله اختراع کرد وی برای این منظور یک بطری شیشه‌ای گردن باریک انتخاب کرده بود. بطری با آب رنگین تا نیمه پر شده و وارونه در یک ظرف محتوی آب رنگینی قرار گرفته بود. با تغییر دما هوای محتوی بطری منبسط یا منقبض می‌شد و ستون آب در گردن بطری بالا یا پایین می‌رفت. وسیله گالیله مقیاسی واقعی برای سنجش دما نبود به طوری که وسیله وی بیشتر جنبه دما نما داشت. تا جنبه دماسنج در سال ۱۶۳۱ری تغییراتی را در دمانگار گالیله پیشنهاد کرد. پیشنهاد وی همان بطری وارونه گالیله بود که در آن فقط سرد و گرم شدن از روی انقباض و انبساط آب ثبت می‌شد.
در سال ۱۶۳۵ دوک فردینالند توسکانی، که به علوم علاقه‌مند بود دماسنجی ساخت که در آن از الکل (که در دمایی خیلی پایین‌تر از دمای آب یخ می‌بندد.) استفاده کرد. و سر لوله را چنان محکم بست که الکل نتواند تبخیر شود.سرانجام در سال ۱۶۴۰ دانشمندان آکادمی لینچی در ایتالیا نمونه‌ای از دماسنج‌های جدیدی را ساختند که در آن جیوه به کار برده و هوا را دست کم تا حدودی از قسمت بالای لوله بسته خارج کرده بودند. توجه به این نکته جالب است که در حدود نیم قرن طول کشید تا دماسنج کاملاً تکامل یافت.
به دنبال کشف دماسنج گابریل دانیل فارنهایت دانشمند هلندی در قرن هفدهم نوعی دماسنج گازی و الکلی ساخت که با دقت اندازه‌گیری بیشتری می‌تواند دمای هوا را اندازه‌گیری کند. او به سال ۱۷۱۴ میلادی دماسنج جیوه‌ای را طراحی و با ضریب دقت بالایی با شیوه‌ای خاص درجه‌بندی نمود. فارنهایت نتایج تحقیقات خود را در سال ۱۷۲۴ میلادی منتشر ساخت.
آندرس سیلیسیوس دانشمند سوئدی به سال ۱۷۲۳ دماسنج جیوه‌ای را به صد قسمت مساوی تقسیم‌بندی نمود. اندازه‌گیری دمای هوا به روش سانتیگراد، (سیلیسیوس) به نام پرافتخار ایشان ثبت شده است.
ژول دانشمند انگلیسی با اعتقاد به این که گرما نوعی انرژی است آزمایش‌های فراوانی در این راستا به انجام رسانید. او با اندازه‌گیری اختلاف دمای آب در بالا و پایین یک آبشار صد و ده متری روی تبدیل انرژی پتانسیل آب به گرما بررسی‌های فراوانی به انجام رسانید. پس از انجام این بررسی‌ها او به این نتیجه رسید که مقدار انرژی در جهان ثابت است فقط می‌تواند از صورتی به صورت دیگر تبدیل شود. پس اجسام می‌توانند در حالت تعادل گرمایی وجود داشته باشند. ژول در سال ۱۸۴۳ اظهار داشت که هرگاه مقدار معینی از انرژی مکانیکی به نظر ناپدید آید، همراه آن مقدار معینی گرما ظاهر شده است و این دلالت بر پایستگی چیزی دارد که امروزه آن را انرژی می‌نامیم. ژول می‌گوید که او خشنود است از اینکه عوامل بزرگ طبیعت به فرمان خالق فناناپذیر هستند و اینکه هرگاه (انرژی) مکانیکی صرف شود هم ارز گرمایی دقیقی از آن به دست می‌آید.
این گفته را ژول با کار خود در آزمایشگاه به دست آورده بود او اساساً مرد عمل بود و وقتی اندک برای تفکرات فلسفی درباره‌ یافته‌های خود داشت. در حالی که دیگران بر مبنای استدلالهای ذهنی به همان نتیجه رسیده بودند که مقدار کل انرژی در جهان ثابت است.
اینک پس از سالها گذر از نظریات ارزشمند دانشمندان انسان توانسته است با بکارگیری روابط و قوانین انرژی گرمایی را بیشتر شناخته و در نیروگاههای تولید برق، کارخانه‌های فولاد سازی، نیروگاههای هسته‌ای، موتور هواپیمای غول پیکر و هزاران هزاران پدیده او را مهار ساخته و بکار گیرد.

تعریف دما سنج
میزان الحراره که سرما و گرما را نشان میدهد، این لفظ فرانسوی است و در فارسی مستعمل است لیکن هنوز جزء زبان نشده است(فرهنگ نظام). ماخوذ از ترموس بمعنی گرما و مترون بمعنی اندازه یونانی و آلتی است که از روی آن میزان گرما اندازه گیری میشود و معمولا از یک لوله شیشه ای که دو طرف آن بسته و در قسمت پایین آن مخزنی پر از جیوه یا الکل تعبیه شده است تشکیل می گردد برای مدرج ساختن آن ، ترمومترهای جیوه ای را در ظرف بخار آبی که در حال جوش است (کنار دریا) قرار میدهند، جیوه بر اساس خاصیت انبساط اجسام در مقابل حرارت در لوله بالا میرود ودر نقطه ای که توقف می کند آن نقطه را با عدد ۱۰۰ علامت می گذارند. سپس مخزن جیوه را در خرده یخ در حال گداز می گذارند. جیوه از لوله پائین می آید و در نقطه ای متوقف می شود که آن را، نقطه صفر میزان الحراره فرض می کنند و در حقیقت نقطه انجماد آب یا نقطه ذوب یخ است . آنگاه میان این دو رقم را با اعداد علامت گذاری نموده که هر قسمت را یک درجه نامند. و اینگونه ترمومترها که بصد درجه تقسیم شده اند ترمومتر سانتی گراد می نامند. چه غیر از این درجه بندی انواع دیگری نیز وجود داردکه از آنجمله است ترمومتر رئومور و ترمومتر فارنهایت . ترمومتر رئومور – در این گرماسنج نقطه یخ یا صفر درجه سانتی گراد برابر است ولی نقطه غلیان آب در این گرماسنج ۸۰ درجه است چه دانشمند فرانسوی در گرماسنج خود بین نقطه انجماد آب یا ذوب یخ و نقطه غلیان آب را ۸۰ درجه تقسیم کرده و بالنتیجه ۸۰ درجه ترمومتر رئومور برابر با صد درجه ترمتر سانتیگرادمیباشد.

محدوده کاری دما سنج
باید توجه داشت که با ترمومترهای جیوه ای نمی توان سرماهای کمتراز ۳۵ درجه زیر صفر را اندازه گیری کرد زیرا جیوه در ۳۹ – درجه سانتی گراد منجمد میشود. از این روی برای اندازه گیری سرماهای شدید از ترمومترهای الکلی استفاده می کنند زیرا الکل در ۱۲۰ درجه سانتی گراد مایع است و بالعکس در ۷۸ درجه سانتی گراد بجوش می آید از این روی ترمومتر ماگزیما و منیما را بطور مرکب بکار می برند که از الکل و جیوه تشکیل می یابد این نوع میزان الحراره می تواند حداکثر درجه حرارت و حداقل آنرا در مدت معینی مثلا یک شبانه روز تعیین کند و از یک میزان الحراره الکلی دراز تشکیل شده است و برای اینکه جای زیاد نگیرد ساقه آنرا دو مرتبه خم کرده اند و در قسمت خمیده آن که بشکل «ایو»ی فرانسه می باشد جیوه ریخته شده و بدین ترتیب الکل به دو قسمت تقسیم می شود: یک قسمت در طرف راست لوله باقی می ماند که بالای آن حباب خالی از هواست کمی الکل در آن بخار می شود و طرف چپ آن منتهی به مخزن الکل است . در بالای دو طرف جیوه دوسوزن فولادی موسوم به نشانه قرا دارد.

طرز عمل
طرز عمل – وقتی هوا گرم میشود الکل مخزن وسطی منبسط می گردد و جیوه را در شاخه چپ بطرف پائین میراند و در نتیجه جیوه در شاخه دومی بالا می رود و نشانه راهمراه می برد. وقتی هوا سرد میشود الکل منقبض می شود و بجای خود برمی گردد. ولی نشانه طرف راست بکنار لوله می چسبد و پائین نمی آید. در صورتی که جیوه در طرف چپ ، نشانه را بالا می برد و اگر دو مرتبه هوا گرم شود این نشانه به کنار لوله می چسبد و این عمل در مدت معینی چندین بار ممکن است تکرار شود. هنگام بازدید ترمومتر نشانه طرف راست حداکثر درجه حرارت و نشانه طرف چپ حداقل آن را نشان میدهد در صورتی که سطح جیوه در این موقع در هر شاخه را که بگیریم درجه حرارت همان زمان را تعیین میکند. مثلا در حداعلای درجه حرارت ۵/۲۱ + و حداقل آن ۵/۱۰ – و درجه حرارت موقع بازدید ۱۲ درجه است و برای باز گرداندن نشانه های آهنی تا سطح جیوه از یک آهن ربای نعلی شکل استفاده میشود.

انواع دما سنج

ترمومتر پزشکی
ترمومتر پزشکی ، این گرماسنج جهت اندازه گرفتن حرارت بدن بکار می رود و چون حد متوسط حرارت بدن انسان ۳۷ درجه سانتی گراد (۵/۹۸ درجه فارنهایت ) است در ترمومترهای پزشکی بر اساس سانتیگراد بین ۳۳ تا ۴۲ در میشود .و برای اینکه بمجرد جدا شدن ترمومتر از بدن انسان (زیر زبان – زیر بغل داخل مقعد…) و برخورد با حرارت یا برودت محیط، جیوه داخل ترمومتر تغییر مکان پیدا نکند، خمیدگی مخصوصی در انتهای لوله ترمومتر نزدیک مخزن جیوه قرار میدهند و هر بار که بخواهند آنرا بکار برند چندین بار ترمومتر را بطرف مخزن تکان شدید میدهند تا جیوه داخل لوله از خمیدگی بگذرد و کاملا وارد مخزن گردد.


پیرومتر یا ترموالکتریک
ترمومتر دیگری در صنایع بکار میرود بنام : پیرومتر یا ترموالکتریک – اساس این ترمومتر بر این خاصیت است که اگر فصل مشترک دو سیم فلزی مختلف را حرارت دهیم جریان برق در آنها برقرار میشود و بوسیله یک «میلی آمپرمتر» دقیق میتوان ثابت کرد که هرچه درجه حرارت زیادتر شود شدت جریان حاصل نیز بیشتر خواهد شد و با اندازه گرفتن شدت جریان درجه حرارت را معلوم میسازند. باید دانست که اختراع ترمومتر را به بسیاری از دانشمندان نسبت میدهند ولی حقیقت آن است که گالیله دانشمند ایتالیایی پیش از سال ۱۵۹۷ م . این ابزار را اختراع کرده و سپس تکامل یافته است . (از لاروس قرن بیستم و کتاب فیزیک تالیف رهنما). و رجوع به گرماسنج و میزان الحراره شود.

دما سنج گازی
جنس ، ساختمان ، و ابعاد دماسنج در ادارات و موسسات مختلف سراسر دنیا که این دستگاه را به کار می‌برند. تفاوت دارد و به طبیعت گاز و گستره دمایی که دماسنج برای آن در نظر گرفته شده است، بستگی دارد. این دماسنج شامل حبابی از جنس شیشه ، چینی ، کوارتز ، پلاتین یا پلاتین ـ ایریدیم ( بسته به گستره دمایی که دماسنج در آن به کار می‌رود ) ، که به وسیله یک لوله موئین به فشارسنج جیوه‌ای متصل است، می باشد. این دماسنج براساس دو قانون ذکر شده در مورد گاز کامل کار می‌کند.

قوانین گازها
همان وقت که اسحاق نیوتن در کمبریج درباره نور و جاذبه می‌اندیشید، یک نفر انگلیسی دیگر به نام رابرت بویل ، در آکسفورد سرگرم مطالعه در باب خواص مکانیکی و تراکم پذیری هوا و سایر گازها بود. بویل که خبر اختراع گلوله سربی اوتوفون گریکه را شنیده بود، طرح خویش را تکمیل کرد، و دست به کار آزمایشهایی برای اندازه ‌گیری حجم هوا در فشار کم و زیاد شد.
نتیجه کارهای وی چیزی است که اکنون به قانون بویل ماریوت معروف است، و بیان می‌کند که حجم مقدار معینی از هر گاز در دمای معین با فشاری که بر آن گاز وارد می‌شود، بطور معکوس ، متناسب است با فشاری که بر آن گاز وارد می‌شود.
حدود یک قرن بعد ، ژوزف گیلوساک فرانسوی ، در ضمن مطالعه انبساط گازها ، قانون مهم دیگری پیدا کرد که بیان آن این است: فشار هر گاز محتوی در حجم معین به ازای هر یک درجه سانتیگراد افزایش دما ، به اندازه ۲۷۳/۱ حجم اولیه‌اش افزایش می‌یابد. همین قانون را یک فرانسوی دیگر به نام ژاک شارل ، دو سال پیش از آن کشف کرده بود. و از این رو اغلب آن را قانون شارل گیلوساک می‌نامند. این دو قانون مبنای ساخت دماسنجهای گازی قرار گرفت.

دماسنج مایعی
این نوع دماسنج یکی از رایج ترین انواع دماسنجهای مورد استفاد درصنعت و غیره می باشد. عمدتا این نوع دماسنج را بعنوان دماسنجهای جیوه ای یا الکلی می شناسیم. ساختمان این نوع دماسنجها از یک مخزن مایع و یک لوله مویین تشکیل شده که مایع درون مخزن در اثر انبساط از لوله مویین بالا رفته و دمای متناسب را نشان میدهد.
دماسنج جیوه ای را می توان برای اندازگیری دما از ۳۷٫۸- تا۳۱۵ سانتی گراد استفاده نمود. اما اگرفضای بالای سطح جیوه را از گاز ازت پر نمایند ، می توان تا دمای ۵۳۸ درجه از آن استفاده نمود.

دماسنج انبساط سیال
این نوع دماسنج یکی از باصرفه ترین ، رایج ترین و تطبیق پذیر ترین وسایل اندازگیری دما در صنعت می باشد.اساس کار این دماسنج در شکل مقابل نشان داده شده است.همانگونه که ملاحظه می شود با افزایش دما فشار درون حباب که می تواند محتوی مایع ، گاز یا بخار باشد ، بالا رفته و توسط فشار سنج اندازه گیری می شود. طول لوله مویین می تواند تا ۶۰ متر باشد ؛ اما این مقدار بر دقت اندازه گیری دما تاثیر گذار خواهد بود.بهترین حالت زمانی است که از لوله مویین کوتاه که به یک ترانس دیوسر فشار الکتریکی متصل شده استفاده گردد.

دماسنج الکتریکی
این نوع دماسنجها اصولا کاربردهای فراوانی در صنعت داشته و قادرند از دماهای پایین تا دماهای بسیار بالا را اندازه گیری نمایند.که عمدتا بصورت مقاومتی و ترموکوپل هستند.

- دماسنج با مقاومت الکتریکی:
دماسنج مقاومتی به صورت یک سیم بلند و ظریف است، معمولا آن را به دور یک قاب نازک می‌پیچند تا از فشار ناشی از تغییر طول سیم که در اثر انقباض آن در موقع سرد شدن پیش می‌آید، جلوگیری کند. در شرایط ویژه می‌توان سیم را به دور جسمی که منظور اندازه گیری دمای آن است پیچید یا در داخل آن قرار داد. در گستره دمای خیلی پایین ، ( دماسنجهای مقاومتی معمولا از مقاومتهای کوچک رادیویی باترکیب کربن یا بلور ژرمانیوم که ناخالصی آن آرسنیک است و جسم حاصل در درون یک کپسول مسدود شده پر از هلیوم قرار دارد، تشکیل می‌شوند. این دماسنج را می‌توان بر روی سطح جسمی که منظور اندازه گیری دمای آن است سوار کرد یا در حفرهای که برای این منظور ایجاد شده است، قرار داد. دماسنج مقاومتی پلاتین را می‌توان برای کارهای خیلی دقیق در گستره –۲۵۳ تا ۱۲۰۰ درجه سانتیگراد به کار برد.

ترمیستور
ترمیستور یک وسیله نیمه رساناست که برخلاف فلزات ، دارای ضریب دمای مقاومت منفی است . بعلاوه مقاومت آن بصورت نمایی با دما تغییر می کند. ترمیستور یک وسطله بسیار حساس است و انتظار می رود که با درجه بندی مناسب ، دارای عملکرد ثابتی تا ۰٫۰۱ سانتی گراد باشد.یکی از ویژگی های جالب آن اینستکه می توان از آن بعنوان جبران کننده دمای مدار های الکتریکی استفاده نمود.

دماسنج کریستال کوارتز
یک روش جدید و بسیار دقیق اندازه گیری دما بر مبنای حساسیت فرکانس تشدید کریستال کوارتز به تغییر دما استوار است .وقتی از زاویه برش مناسب برای کریستال استفاد شود، یک تطابق کاملا خطی میان فرکانس و دما برقرار میگردد. مدلهای تجاری این وسیله از شمارنده های الکترونیکی و دستگاه قرائت رقم نما برای اندازه گیری فرکانس استفاده می کنند.گستره دمایی کار کرد این دستگاه از منفی ۴۰ درجه تا ۲۳۰ درجه سانتیگراد ادعا شده است.

دمانگاری کریستال مایع
کریستالهای مایع خمیری ، که از استرهای کلسترول ساخته شده اند پاسخ جالبی به دما از خود نشان می دهند . در یک گستره تکرار پذیر دما ، کریستال مایع همه رنگهای طیف رنگی را از خود آشکار می سازد.این پدیده بازگشت پذیر و تکرار پذیر است . با تغییر دادن فرمول مورد نظر می توان از کریستالهای مایع از کمتر از صفر درجه تا چند صد درجه سانتی گراد استفاده نمود.

ترموکوپل
ترموکوپل وسیله دیگری است که برای اندازه‌ گیری دما مورد استفاده قرار می‌گیرد. در این نوع دماسنج از خاصیت انبساط و انقباض اجسام جامد استفاده می‌گردد. گستره یک ترموکوپل بستگی به موادی دارد که ترموکوپل. از ان ساخته شده است گستره یک ترموکوپل پلاتنیوم ـ ایرودیوم که ۱۰ درصد پلاتینیوم دارد از صفر تا ۱۶۰۰ درجه است است. مزیت ترموکوپل در این است که بخاطر جرم کوچک ، خیلی سریع با سیستمی که اندازه‌ گیری دمای آن مورد نظر است، به حال تعادل گرمایی در می‌آید. لذا تغییرات دما به آسانی بر آن اثر می‌کند، ولی دقت دماسنج مقاومتی پلاتین را ندارد.

انواع دماسنج های مورد استفاده در هواشناسی
-دماسنج معمولی استاندارد(Thermometer)
این دماسنج یک لوله بسیار باریک شیشه ای مسدود است که در انتهای آن محفظه ای تعبیه و از جیوه یا الکل پر شده است. در داخل لوله دماسنج خلاء کامل وجود دارد. گرم و سرد شدن مخزن باعث گرم و سردشدن مایع درون مخزن شده و متعاقب آن باعث بالا و پایین رفتن مایع در داخل مخزن شیشه ای می شود، با مشاهده سطح مایع در داخل لوله دماسنج و قرائت عددی که روی بدنه شیشه نوشته شده است دمای هوا در آن لحظه مشخص می شود.

-دماسنج حداکثر (Maximum Thermometer)
اغلب نیاز است علاوه بر دمای معمولی هوا حداکثر دمایی که در طول یک دوره معین مثلاً یک شبانه روز اتفاق افتاده است نیز اندازه گیری و تثبیت شود به این منظور از دماسنج حداکثر استفاده می کنند. این نوع دماسنج با یک تفاوت جزیی تقریبا مشابه دماسنج های معمولی است به این صورت که لوله مویین آن در محلی که به مخزن منتهی می شود بسیار باریک شده است. هنگامی که دما زیاد می شود جیوه داخل مخزن منبسط شده و نیروی حاصل می تواند باعث راندن جیوه از داخل مجرای باریک بالای مخزن به قسمت بالای لوله گردد به این ترتیب ارتفاع جیوه در داخل مخزن بالا می رود و با کاهش دما مایع داخل مخزن منقبض می شود ولی باریک بودن لوله از برگشت مایع به داخل مخزن جلوگیری می کند و سطح مایع در داخل لوله در محلی که بالاترین دمای قبلی اتفاق افتاده است باقی می ماند بنابراین سطح فوقانی جیوه نشان دهنده حداکثر دمای اتفاق افتاده است.

-دماسنج حداقل (Minimum Thermometer)
دماسنج های حداقل برای تثبیت پایین ترین دمای اتفاق افتاده در یک دوره معین به کار می رود دماسنج های حداقل مشابه دماسنج های معمولی است با این تفاوت که مایع داخل مخزن این نوع دماسنج به جای جیوه از مایعات رقیق تر مانند الکل استفاده می شود. به علاوه در داخل لوله مویین یک سوزن شیشه ای که دو سر آن گرد می باشد رها گردیده که به عنوان شاخص از آن استفاده می شود، وقتی دمای هوا کاهش می یابد با انقباض مایع سطح بالای الکل در داخل لوله مویین با اعمال نیروی کشش سطحی شاخص سوزنی را نیز به طرف پایین مخزن حرکت می دهد با افزایش دما مجدداً الکل در داخل لوله مویین از اطراف سوزن عبور کرده و به طرف بالا صعود می کند اما سوزن در پایین ترین محلی که قبلا در اثر کشش سطحی پایین آمده بود باقی می ماند. بنابراین قسمت بالایی شاخص شیشه ای پایین ترین دمایی را که اتفاق افتاده است نشان می دهد در حالی که انتهای سطح الکل در بالای لوله دمای لحظه ای هوا را نشان میدهد.

-دماسنج حداقل – حداکثر(Max- Thermometer)
این دماسنج ترکیبی از دو دماسنج حداقل و حداکثر می باشد، این دماسنج از یک لوله شیشه ای U شکل ساخته شده است که دو انتهای آن مسدود می باشد. قسمت پایینی لوله U شکل با جیوه پر شده است. علاوه بر جیوه قسمت بالایی لوله قسمت چپ به طور کامل از الکل پر شده است اما نصف حجم لوله سمت راست که انتهای آن به صورت یک مخزن گشاد شده می باشد از الکل پر شده است و نصف دیگر آن از یک نوع گاز پر شده است. در بالاترین سطح جیوه و در داخل الکل در هر دو ستون شاخص های شیشه ای رنگی که یک سوزن در وسط آن تعبیه شده است وجود دارد در اثر گرم و سرد شدن و متعاقب آن انبساط و انقباض سطح جیوه بالا و پایین می رود. بالاترین حدی که جیوه در شاخه سمت چپ بالا رفته است دمای حداقل و بالاترین حدی که جیوه در شاخه سمت راست بالا رفته دمای حداکثر را نشان می دهد.

-دمانگار (Thermograph)
دمانگار یک وسیله کاملاً مکانیکی است و با استفاده از یک عنصر فلزی که انحنای آن با دما تغییر می کند ساخته شده است یک طرف عنصر فلزی حساس به تغییرات دما که دارای انحنا می باشد به بازوی اهرم طویل و متحرکی بسته شده است که این بازو ممکن است مستقیماً دما را از روی یک مقیاس ساده درجه بندی شده نشان دهد و یا اینکه انتهای بازو به یک قلم ثبات متصل گردد. با تغییر دمای هوا انحنای فلز تغییر می کند و این امر با توجه به نحوه تغییرات دما باعث انحراف قلم در انتهای بازوی مکانیکی به طرف بالا و پایین در روی کاغذ گراف می گردد و دماها ثبت می شوند

آذرسنج (Optical Pyrometer)
این نوع دماسنج که به آن دماسنج غیر تماسی هم گفته می شود ، بر پایه رنگ نور انتشار یافته از جسم بوده که در نهایت دمای جسم مورد نظر را براساس را اندازه گیری میکنیم این حقیقت که تمامی اجسام سیاه یک اندازه دمایی نور نشان خواهند داد ، نتیجه میگیریم که دامنه کاربردی این نوع دماسنج در دماهای بالای سرخ بوده و برای آهن تقریبا بالای ۵۰۰ درجه سانتی گراد می باشد.

طرز کار:
نور ایجاد شده توسط جسم از درون یک سیستم اپتیکال (با بزرگ نمایی معین) که در درون آن یک لامپ گداخته کوچک فرار داده شده ، گذرانده می شود . (بدین ترتیب اگر کسی از درون چشمی بدرون این سیستم نگاه می کند ، نوری بسیار باریکی را ملاحظه خواهد کرد.) در برخورد این نور با فیلمان لامپ ، جریانی را از فیلمان عبور خواهد داد که تعیین کننده میزان دمای جسم است. این جریان توسط پتانسیومتری که بین منبع تغذیه (یک باطری) و لامپ قرار داده شده کنترل میگردد. برای نمایش دما از یک آم متر (ammeter ) استفاده میگردد. دامنه آم متر از ۹۰۰F برای دمای ۵۰۰ درجه سانتی گراد تا۳۰۰۰F برای دمای ۱۶۰۰ درجه سانتی گراد متغییر است.

آذرسنج ثبتگر و کنترلگر
در اغلب تأسیسات صنعتی، تنها نشان دادن دما توسط دستگاه کافی نیست و باید با قراردادن یک قلم متحرک به جای عقربه پتانسیل سنج دما را ثبت کرد. این دستگاه آذرسنج ثبتگر نام دارد. همچنین با استفاده از مدارهای الکتریکی در دستگاه میتوان جریان گاز به مشعلها یا جریان برق به عنصرهای گرمایی را کنترل و دمای کوره را در مقدار مورد نظر ثبت کرد. این دستگاه آذرسنج کنترل گرنام دارد. امکان طراحی وسیله ای برای ثبت و کنترل دما متشکل از یک یا چند ترموکوپل نیز هست.

آذرسنج تابشی
اصول کارکرد آذرسنج تابشی بر پایه یک منبع تابشی استاندارد به نام جسم سیاه یا تابشگر کامل قرار دارد. تابشگر کامل، جسمی فرضی است که کلیه پرتوهای تابیده به خود را جذب می کند. در دمایی یکسان، چنین جسمی سریعتر از هر جسم دیگر از خود انرژی می تابد. آذرسنج های تابشی، عموماً برای نشان دادن دمای تابشگر کامل یا دمای حقیقی درجه بندی می شوند. قانون استفان-بولتزمن که مبنای مقیاس دمای آذرسنج های تابشی است، نشان می دهد که آهنگ تابش انرژی از یک تابشگر کامل متناسب با توان چهارم دمای مطلق آن است:
که در اینجا:
آهنگ تابش انرژی = W
ثابت تناسب =K
دمای مطلق تابشگر کامل= T

آذر سنج نوری
ابزار تشریح شده در قسمت قبل که به تمام طول موجهای تابش پاسخ می دهد آذر سنج تابشی نام دارد. با اینکه اصول کارکرد آذر سنج نوری با اذر سنج تابشی یکسان است اما آذر سنج نوری با طول موج منفرد یا نوار باریکی از طول موج طیف مرئی کار میکند. آذر سنج نوری، دما را از طریق مقایسه درخشندگی نور گسیل شده توسط منبع، با نور گسیل شده از یک منبع استاندارد، اندازه می گیرد. برای سهولت مقایسه رنگها، یک فیلتر قرمز که تنها طول موج پرتو قرمز را عبور میدهد به کار می رود.
متداول ترین نوع آذرسنج نوری که در صنعت به کار می رود، نوع رشته پنهان شونده است. این آذرسنج شامل دو قسمت، یک تلسکوپ و یک جعبه کنترل است. تلسکوپ شامل یک فیلتر شیشه ای قرمز که جلوی چشمی نصب شده و یک لامپ با رشته درجه بندی شده است که عدسی های شیء تصویر از جسم مورد آزمایش را بر آن متمرکز می کند. این دستگاه دارای یک کلید برای بستن مدار الکتریکی لامپ و یک پرده جاذب برای تغییر گستره اندازه گیری دما توسط آذرسنج است.
گستره کاری آذرسنج نوری مورد بحث، از˚۷۶۰ تا C˚۱۳۱۵ است. حد بالایی دما تا اندازه ای بستگی به خطر خراب شدن رشته و میزان خیره کنندگی ناشی از درخشش در دماهای بالاتر دارد. گستره دما ممکن است با به کارگیری پرده جاذب بین عدسی شیء و شبکه رشته به حد بالاتری افزایش یابد و به این وسیله سازگاری درخشش در دماهای پایینتر رشته ممکن می شود.بدین ترتیب با استفاده از دماهای پایینتر رشته، میتوان آذرسنج را برای دماهای بالاتر درجه بندی کرد. با به کارگیری پرده های جاذب مختلف، حد بالایی آذرسنج نوری را میتوان تا C˚۵۵۰۰ (C˚۱۰۰۰۰) یا بیشتر افزایش داد.
برخی مزایای آذرسنجهای نوری و تابشی عبارتند از:
۱٫ اندازه گیری دماهای بالا؛
۲٫ اندازه گیری دمای اجسام دور از دسترس؛
۳٫ اندازه گیری دمای اجسام کوچک یا متحرک؛
۴٫ هیچ یک از قسمتهای دستگاه در معرض آثار مخرب گرما نیست.

محدودیتهای آنها عبارتند از:
چون سازگاری نورسنجی بستگی به قضاوت فردی دارد، خطاهایی روی می دهد؛
به خاطر وجود دود یا گاز بین ناظر و منبع اشتباهاتی پدید می آید؛
بسته به میزان انحراف از شرایط تابشگر کامل خطا ایجاد می شود.

+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:48  توسط سید مرتضی  | 

میکروسکوپ چیست ؟

ميكروسكوپ يكي از وسايل آزمايشگاهي اصلي در آزمايشگاه گياه شناسي است . كه در اينجا انواع آن را مورد بحث و بررسي قرار داده و طرز كار با ميكروسكوپ نوري معمولي را به تفصيل ارائه مينمائيم .
ميكروسكوپهاي مختلف داراي بزرگنمائي هاي متفاوتي ميباشند كه عموماً با وجود عدسيهاي گوناگون، تصوير نمونه مورد نظر چند برابر ميشود . اصول كلي در تمامي انواع ميكروسكوپها براساس عبور نور با طول موجهاي متفاوت از چندين عــدسي محدب ميباشد كه هرچقدر طول موج نور بكار رفته در ميكروسكوپ مزبور كوتاهتر باشد قدرت تفكيك و يا جــداكنندگي آن ميكروسكوپ بيشتر است . براي مثال قدرت تفكيك چشم انسان 1/0 ميليمتر ميباشد و ميكروسكوپ نوري معمولي 24/0 ميكرون .
در طول قرن هیجدهم میکروسکوپ در زمره وسایل تفریحی به شمار می‌آمد. با پژوهشهای بیشتر پیشرفتهای قابل توجهی در شیوه ساختن عدسی شئی حاصل شد. بطوری که عدسی‌های دیگر بصورت ذره‌ بینهای معمولی نبودند بلکه خطاهای موجود در آنها که به کجنمایی معروف هستند، دفع شده‌اند و آنها می‌توانستند جرئیات یک شی را دقیقا نشان دهند. پس از آن در طی پنجاه سال، پژوهشگران بسیاری تلاش کردند تا بر کیفیت و مرغوبیت این وسیله بیافزایند. بالاخره ارنست آبه توانست مبنای علمی میزان بزرگنمایی میکروسکوپ را تعریف کند.
بدین ترتیب میزان بزرگنمایی مفید آن بین ۵۰ تا ۲۰۰۰ برابر مشخص شد. البته می‌توان میکروسکوپ‌هایی با بزرگنمایی بیش از ۲۰۰۰ برابر ساخت. مثلاً قدرت عدسی چشمی را بیشتر کرد. اما قدرت تفکیک نور ثابت است و درنتیجه حتی بزرگنمایی بیشتر می‌تواند دو نقطه از یک شی را بهتر تفکیک کند. هر چه بزرگنمایی شی افزایش یابد به میزان پیچیدگی آن افزوده می‌شود. بزرگنمایی شی در میکروسکوپهای تحقیقاتی جدید معمولاً ۳X، ۶X، ۱۰X، ۱۲X، ۴۰X و ۱۰۰X است. در نتیجه بزرگنمایی در این میکروسکوپ بین ۱۸ تا ۱۵۰۰ برابر است. چون بزرگنمایی میکروسکوپ نوری بدلیل وجود محدودیت پراش از محدوده معینی تجاوز نمی‌کند برای بررسی بسیاری از پدیده‌هایی که احتیاج به بزرگنمایی خیلی بیشتر دارند مفید است. تحقیقات بسیاری صورت گرفت تا وسیله دقیق تری با بزرگنمایی بیشتر ساخته شود. نتیجه این پژوهشها منجر به ساختن میکروسکوپ الکترونی شد.

انواع میکروسکوپ از نظر نوع آشکارساز

میکروسکوپ‌های الکترونی
میکروسکوپ الکترونی روبشی
میکروسکوپ الکترونی عبوری
میکروسکوپ نوری
میکروسکوپ نوری عبوری
میکروسکوپ نوری بازتابی
میکروسکوپ‌های پراب پویشی
میکروسکوپ نیروی جانبی
میکروسکوپ نیروی اتمی
میکروسکوپ نیروی مغناطیسی
میکروسکوپ تونلی پویشی
میکروسکوپ میدان نزدیک نوری
میکروسکوپ ولتاژ پویشی
انواع ميكروسكوپ به طور کلی به سه دسته زیر تقسیم می شوند :
1. ميكروسكوپ پلاريزان:
كاربرد آن در زمين شناسي است و براي مطالعه خواص نوري بلورها، شناسايي كاني ها ،مطالعه پترولوژي و پتروگرافي سنگ هاي آذرين ،دگرگوني و رسوبي از آن استفاده مي شود
2. ميكروسكوپ پيناكولار:
دوچشمي هستند و فقط اجسام را بزرگ مي كنند در زمين شناسي در قسمت فسيل شناسي كاربرد بيشتري دارد.
3. ميكروسكوپ انعكاسي:
براي شناسايي كاني هاي فلزي مورد استفاده قرار مي كيرند چون آن ها نور را از خودشان عبور نمي دهند .و براي مطالعه شكل و اندازه آنها بررسي مراحل كاني سازي ،وضعيت و رابطه نسبي كاني ها به يكديگر.

انواع میکروسکوپ آشکارساز
میکروسکوپ نوری

با توجه به گسترش روز افزون میکروسکوپها در شاخه‌های مختلف علوم پزشکی و صنعت هر روزه شاهد پیشرفتهای مختلف در صنعت میکروسکوپها می‌باشیم. این پیشرفتها شامل پیشرفت سیستم روزی طراحی اجزای مکانیکی ، پایداری استحکام و راحتی در استفاده از آنها می‌باشد. میکروسکوپهای نوری معمولی که در تحقیقات بیولوژیکی و پزشکی بکار می‌روند دو دسته می‌باشند. یک دسته دارای چشمه نوری مجزا از میکروسکوپ می‌باشند و دسته دوم میکروسکوپهایی می‌باشند که دارای چشمه نوری تعبیه شده در میکروسکوپ می‌باشند. میکروسکوپهای معمولی مدرن مورد استفاده از نوع دوم می‌باشد و تقریبا ساخت و استفاده نوع اول منسوخ شده است.

اجزای اصلی میکروسکوپ نوری

پایه
یک قطعه شامل یک بخش پایین به صورتهای مختلف و گاهی بصورت نعل اسبی می‌باشد که بر روی میز محل مطالعه قرار می‌گیرد. پایه دارای ستون می‌باشد که اجزا مختلف به آن متصل می‌شود، وزن پایه نسبتا زیاد است و اجزائی که بر روی پایه سوارند عبارتند از: چشمه نور و حرکت دهنده لوله میکروسکوپ.
لوله
میکروسکوپهای مختلف تک چشمی (monocular) و یا دو چشمی (binocular) می‌باشند، وقتی به مدت طولانی می‌خواهیم از میکروسکوپ استفاده کنیم دو چشمی بهتر است، چون مانع خستگی چشم می‌باشد. لوله شامل دو گروه عدسی به نامهای چشمی و شیئی است.
عدسیهای شیئی
در میکروسکوپهای معمولی چهار عدسی شیئی بر روی صفحه چرخان نصب شده که ویژگیهای این عدسیها بصورت زیرا است:
عدسی شیئی آکروماتیک X10 (16 میلیمتری با N.A = 0.3)
عدسی شیئی آکروماتیک X40 (4 میلیمتری با N.A = 0.65)
عدسی فلورئیت X45 (35 میلیمتری)
عدسی آکروماتیک X90 (2 میلیمتری و N.A = 1.2)
دو عدسی اول در حالت خشک و دو عدسی بعدی در حالت ایمرسیون روغنی مورد استفاده قرار می‌گیرند. وظیفه عدسی شئی تهیه تصویر بزرگ شده از شیئی مورد نظر است عدسیهای شیئی وقتی به صورت خشک بکار می‌روند، دارای N.A زیاد نمی‌باشند و لذا مدت تفکیک آنها است. استفاده از روش ایمرسیون روغنی می‌تواند موجب افزایش N.A و افزایش روزلوشن شود. عدسیهای شیئی معمولا بصورت عدسیهای مرکب می‌باشند. کیفیت در عدسیهای شیئی وابسته به شدت روشنایی تصویر می‌توان تفکیک می‌باشد.
عدسیهای چشمی
وظایفی که چشمی بر عهده دارند عبارتند از: بزرگ سازی تصویر معکوس حاصله از عدسی شیئی ، تشکیل تصویر مجازی از تصویر حاصله بوسیله عدسی شیئی ، اندازه گیری و سنجش اجزا واقع در تصویر. چشمیها دارای انواع مختلفی می‌باشند که دو نوع معروف و معمول آنها عبارتند از چشمی هویگنس (Huygenian) و چشمی رامزدن (Ramsden). چشمی هویگنس متشکل از دو عدسی سطح محدب می‌باشد که یک طرف هر کدام مسطح و یکطرف محدب می‌باشد.
در نوع هویگنس سطح محدب هر دو عدسی بطرف پایین می‌باشد و بین این دو عدسی دیافراگم قرار گرفته ، دیافراگم در محل کانون عدسی بالای عدسی چشمی واقع است. عدسی پایین پرتوهای رسیده از عدسی شی را جمع آوری نموده و در محل دیافراگم یا در نزدیکی آن متمرکز می‌نماید. عدسی چشمی این تصویر را بزرگ نموده و البته بصورت یک تصویر مجازی بزرگ شده به چشم فرد مشاهده‌گر منتقل می‌کند.
کار دیافراگم کاهش خیره کننده‌گی نور رسیده به چشم بیننده است.چشمیهای هویگنس به چشمیهای منفی معروفند و دارای بزرگنمایی 10 و 5 می‌باشند. چشمی هویگنس دارای قیمت نسبتا ارزان و کارایی مناسب می‌باشد، اشکال عمده آن محدود بودن میدان دید و عدم تامین راحتی کافی برای چشم است. چشمیهای رامزدن به چشمیهای مثبت معروفند، این چشمیها با دقت خوبی انحرافات عدسیهای آپکروماتیک را تصحیح می‌نمایند.
سیستم روشنایی
میکروسکوپها دارای محدودیتهای متعددی می‌باشند و لیکن در عمل اغلب روشنایی میکروسکوپ موجب محدودیت اصلی می‌شود. بنابراین تلاشهای زیادی در تهیه روشنایی و روش تهیه روشنایی مناسب برای میکروسکوپها گردیده است. پس تهیه نور مناسب می‌تواند نقش اساسی در وضوح تصویر داشته باشد. روشنی محیط نمی‌تواند برای تهیه تصویر مناسب و کافی باشد، لذا در تهیه روشنایی حتما باید از لامپها و چشمه‌های مصنوعی نوری استفاده می‌شود. لامپهای مورد استفاده در میکروسکوپها عبارتند از:
• لامپ هالوژن: این لامپ نور سفید ایجاد می‌کند و متشکل از یک رشته تنگستن در گاز هالوژن می‌باشد. حاصلضرب شدت نور حاصله در طول عمر این لامپ تقریبا ثابت است. از لحاظ قیمت در مقایسه با لامپ جیوه و گزنون ارزانتر می‌باشد و برای کارهای فتومیکروگرافی مفید است.
• لامپ تنگستن: این لامپها در میکروسکوپهای ارزان قیمت و آموزشی بکار می‌روند.
• لامپ گزنون: این نوع لامپ یک لامپ تخلیه الکتریکی است. این لامپها دارای پایداری بیشتری نسبت به لامپهای جیوه‌ای می‌باشند.
• لامپ جیوه‌ای: این لامپ همانند لامپ گزنون از طریق تخلیه الکتریکی ایجاد نور می‌نماید. لامپ جیوه‌ای حاوی مقدار کمی جیوه است که در اثر یونیزه شدن هوای داخل لامپ ، یونهای تولید شده موجب تبخیر و یونیزه شدن جیوه‌ها می‌شوند.
کندانسور
وظیفه کندانسور متمرکز سازی نور بر روی نمونه می‌باشد. کندانسور در زیر Stage که محل قرار‌‌‌گیری نمونه است واقع می‌شود.
• کندانسور آبه: این نوع کندانسور عموما در میکروسکوپهای معمولی بکار می‌روند. در این نوع کندانسورها دو عدسی بکار رفته است و دارای قیمت ارزان می‌باشند. این کندانسورها با عدسیهای شیئی و آکرومات CF با بزرگنمایی 4x تا 100x برای مشاهدات عمومی و کاربردهای تشخص مفید می‌باشند.
• کندانسور با عدسی متحرک: این کندانسور برای فتومیکروگرافی همراه با عدسی‌های شیئی و پلن آکرومات از نوع CF مفید می‌باشند.
• کندانسور آکرومات: این گروه کندانسور در مشاهدات و فتومیکروگرافی مورد استفاده قرار می‌گیرد این نوع کندانسور با عدسیهای شیئی 4x تا 100x می‌تواند بکار رود.
• کندانسور آکرومات - آپلانت: این نوع کندانسور را پایه همراه با عدسی های شیئی آپوکرومات بکار برد این کندانسور ها برای فتومیکروگرافی جهت تصویرگیری از اجزا بسیار ریز بسیار مفید می باشد.
• کندانسور جهت عدسیهای شیئی با توان کم ، که این نوع کندانسور معمولا در بزرگنماییهای بسیار پایین مثل عدسی شیئی با بزرگنمایی 4x تا 460x مفید هستند.

چگونگی تشکیل و مشاهده تصویر

نور به صورت موج سینوسی پیوسته انتشار نمی‌یابد و لیکن می‌توان تصور کرد که یک فوتون همچون یک بار ولی با سرعت 300000 کیلومتر در ثانیه حرکت می‌کند. و چون این ذرات بطور پی‌در‌پی در حال تعقیب یکدیگرند، لذا در عمل راهی جز نمایش آنها به صورت یک موج پیوسته نیست. فوتونهای نوری می‌توانند دارای طول موجهای متفاوتی باشند، رنگ نور بوسیله طول موج آن تعیین می‌شود. مخلوط نورهای مختلف موجب تحریک شبکیه چشم می‌شود که انسان احساس رنگ سفید می‌نماید.
اکثرا اشیایی که توسط میکروسکوپ مشاهده می‌شوند نسبت به نور شفاف می‌باشند و اجزای آنها تنها وقتی قابل مشاهده می‌باشند که این اجزا نسبت به زمینه دارای کنتراست (کنتراست در شدت و یا رنگ) باشند. وقتی که نور سفید به یک جسم قرمز بتابد، تمامی طول موجهای موجود در نور سفید بجز نور قرمز در آن جذب می‌شود. بنابراین یک جسم با ناحیه قرمز را در یک زمینه سفید بخاطر آنکه دارای کنتراست رنگی می‌باشد می‌توان دید.
عدسی شیئی در میکروسکوپ که یک عدسی همگرا با فاصله کانونی کوچک است، تصویر حقیقی و وارونه و بزرگتر از شیئ را تشکیل می‌دهد. برای این منظور شیئ باید بین کانون عدسی شیئی و قرار گیرد، توان عدسی شیئی بزرگتر از توان عدسی چشمی است و تصویر اول را بزرگتر می‌کند (عدسی چشمی مثل ذره بین عمل می‌کند) و تصویر حاصل از عدسی شیئی باید در فاصله کانونی عدسی چشمی باشد. از این شیئ ، تصویر مجازی نهایی تشکیل می‌شود که بزرگتر است.

میکروسکوپ الکترونی (Electron Microscopy)

میکروسکوپ الکترونی نوعی میکروسکوپ مرکب است. اولین میکروسکوپ مرکب ، احتمالا در سالهای 1600 میلادی توسط دو نفر هلندی به نام هانس و زاکاریاس جنس ساخته شد. درسال 1873 ارنست آبه ثابت کرد که برای تشخیص دقیق دو ذره نزدیک به هم ، طول موج نور نباید بیشتر از دو برابر فاصله دو ذره از یکدیگر باشد. بالاخره درسال 1939 اولین میکروسکوپ الکترونی ساخته شد.

سیر تحولی و رشد

میکروسکوپهای اولیه که میکروسکوپ ساده نام داشت، شامل فقط یک عدسی بودند اما میکروسکوپ الکترونی ، که میکروسکوپ مرکب است از ترکیب حداقل دو عدسی بوجود آمده است. در طول قرن هیجدهم میکروسکوپ در زمره وسایل تفریحی به شمار می‌آمد. با پژوهشهای بیشتر پیشرفتهای قابل توجهی در شیوه ساختن عدسی شئی حاصل شد. بطوری که عدسیهای دیگر یصورت ذره‌ بینهای معمولی نبودند بلکه خطاهای موجود در آنها که به کنجهایی معروف هستند، دفع شده‌اند و آنها می‌توانستند جرئیات یک شی را دقیقا نشان دهند. پس از آن در طی پنجاه سال ، پژوهشگران بسیاری تلاش کردند تا بر کیفیت و مرغوبیت این وسیله بیافزایند. بالاخره ارنست آبه توانست مبنای علمی میزان بزرگنمایی میکروسکوپ را تعریف کند.
بدین ترتیب میزان بزرگنمایی مفید آن بین 50 تا 2000 برابر مشخص شد. البته می‌توان میکروسکوپ‌هایی با بزرگنمایی بیش از 2000 برابر ساخت. مثلا قدرت عدسی چشمی را بیشتر کرد. اما قدرت تفکیک نور ثابت است و درنتیجه حتی بزرگنمایی بیشتر می‌تواند دو نقطه از یک شی را بهتر تفکیک کند. هر چه بزرگنمایی شی افزایش یابد به میزان پیچیدگی آن افزوده می‌شود. بزرگنمایی شی در میکروسکوپهای تحقیقاتی جدید معمولا 3X ، 6X ، 10X ، 12X ، 40X و 100X است. در نتیجه بزرگنمایی در این میکروسکوپ بین 18 تا 1500 برابر است. چون بزرگنمایی میکروسکوپ نوری از محدوده معینی تجاوز نمی‌کند برای بررسی بسیاری از پدیده‌هایی که احتیاج به بزرگنمایی خیلی بیشتر دارند مفید است. تحقیقات بسیاری صورت گرفت تا وسیله دقیق تری با بزرگنمایی بیشتر ساخته شود. نتیجه این پژوهشها منجر به ساختن میکروسکوپ الکترونی شد.

مکانیزم

میکروسکوپ مرکب از یک لوله تشکیل شده که در دو انتهای آن دو عدسی شئی نزدیک به شی مورد مطالعه و عدسی چشمی قرار دارد. تصویری که توسط عدسی شئی بوجود می‌آید، بوسیله عدسی چشمی بزرگتر می‌شود. به این جهت بزرگنمایی آن بیش از قدرت یک عدسی است. در میکروسکوپهای پیشرفته ، دستگاه نوری پیچیده تر است. بدین ترتیب که در آنها علاوه بر لامپ ، یک کندانسور (مجموعه عدسیهای متمرکز کننده نور) و یک دیافراگم که شدت نور را کنترل می‌کند، قرار داده شده است. لامپی که در این نوع میکروسکوپها مورد استفاده قرار می‌گیرد، با ولتاژ کم کار می‌کند. لامپهای فراوانی برای این منظور وجود دارند که هرکدام نوری با شدت و طول موج مورد نظر تامین می‌کنند. بنابراین برای تفکیک دو نقطه نزدیکتر از 2500 آنگستروم باید از میکروسکوپ الکترونی استفاده کرد.
زیرا طول موج الکترون از طول موج نور کمتر است. اولین میکروسکوپ الکترونی که ساخته شد، درست مانند میکروسکوپ نوری که شعاع نور را از داخل نمونه مورد مطالعه عبور می‌دهد، شعاع الکترون را از داخل مقطع بسیار نازکی عبور می‌دهد. چون تراکم مواد در تمام قسمتهای نمونه مورد مطالعه یکسان نیست، میزان الکترونی که از قسمتهای مختلف عبور می‌کند متفاوت است. درنتیجه تصویری از قسمتهای تاریک و روشن آن بدست می‌آید. میکروسکوپ الکترونی دارای یک قسمت لوله‌ای شکل است که الکترون می‌تواند آزادانه از آن عبور کند. در قسمت بالای لوله یک قطب منفی الکتریکی به شکل رشته سیم نازک وجود دارد که جنس آن از تنگستن است. این قسمت آنقدر حرارت داده می‌شود تا بتواند از خود الکترون آزاد کند.
این عمل با ایجاد اختلاف پتانسیل از 20000 تا 100000 ولت بین کاتد و آند صورت می‌گیرد. در نتیجه یک شعاع الکترونی بسوی پایین قسمت لوله‌ای شکل شتاب داده می‌شود. به این سیستم تفنگ الکترونی می‌گویند. در طول لوله عدسیهایی همگرا اندازه و روشنایی شعاع الکترونی را قبل از برخورد با نمونه مورد مطالعه کنترل می‌کنند. مقطع مورد بررسی روی یک صفحه مشبک دایره شکلی قرار داده می‌شود. شعاع الکترونی پس از عبور از مقطع و قبل از این که به حد بزرگنمایی نهایی برسد، از میان عدسیهایی شئی عبور کرده و تنظیم می‌شود. سپس توسط عدسیهایی بر روی صفحه زیر میکروسکوپ منعکس می‌شود. چگالی بزرگنمایی بیشتر میکروسکوپها از 50 تا 800000 برابر است. صفحه زیر میکروسکوپ از مواد فسفردار (فسفید روی) پوشانیده شده که در مقابل پرتو الکترون از خود نور تولید می‌کند. در زیر این صفحه یک دوربین عکاسی قرار دارد که از تصویر روی صحنه عکس می‌گیرد.
اطلاعاتی که میکروسکوپ الکترونی ارائه می‌دهد.
• توپوگرافی شی (نقشه برداری): در این کار با آشکار کردن مشخصات سطح و بافت داخلی شی ، می‌توان به خواصی مانند سفتی و میزان ارتجاعی بودن آن پی برد.
• مورفولوژی (زیست شناسی): به دلیل اینکه در این رویت شکل و سایر ذرات مشخص است، می‌توان به نیروی استحکام پی برد.
• ترکیب: این میکروسکوپ می‌تواند عناصر سازنده شی را مشخص نماید. بنابراین می‌توان به خواصی مانند نقطه ذوب ، اکتیویته شی دست یافت.
• بلور شناسی: میکروسکوپ الکترونی چگونگی چیده شدن اتم را در مجاورت یکدیگر نشان می‌دهد. به این ترتیب می‌توان آنها را از نظر رسانایی و خواص الکتریکی بررسی نمود.
• میکروسکوپ فلورسانت (fluorescent microscope)
• انواع خاصی از میکروسکوپ نوری که منبع نور آن پرتوهای فرابنفش است.برای مشاهده نمونه زیر این میکروسکوپ ها بخش ها یا ملکول های ویژه داخل سلول با مواد فلورسانت یا نورافشان رنگ آمیزی می شوند. زمانی هدف تشخیص پروتئین های خاص یا جایگاه آنها در سلول باشد، روش های معمولی رنگ آمیزیکه پروتئین ها را به طور عام رنگ می کنند قابل استفاده نیست.برای رنگ آمیزی اختصاصی، معمولا از پادتن های اختصاصی متصل به مواد فلورسانت استفاده می شود.مواد فلورسانت نور را در طول موج فرابنفش جذب می کنند و در طول موج بلندتری در طیف مرئی تابش می کنند. تصویری که دیده می شود حاصل نور تابش شده از نمونه است. رودامین و فلورسئین دو نوع از رنگ های معمول فلورسانت هستند که به ترتیب نور قرمز و سبز از خود تابش می کنند.
• میکروسکوپ اختلاف فاز (phase contrast microscope)
• مزیت میکروسکوپ اختلاف فاز در این است که می توانیم با آن سلول های زنده را با جزئیات بیشتر مشاهده کنیم.تیمارهایی مثل تثبیت نمونه می توانند دگرگونی هایی در ساختار درونی سلول بوجود آورند. بنابراین مطاله سلوله های زنده که هیچ تیماری ندیده اند خیلی مطلوب است. می توان فرایند هایی مثل تقسیم میتوز(mitosis) در سلول های زنده را نیز با این میکروسکوپ ها مطالعه کرد. در برخی موارد برای عکس برداری پیوسته و دراز مدت از سلول فعال ، دوربینی به میکروسکوپ وصل می شود.مطالعه سلولهای زنده با میکروسکوپ تداخلی(interference microscope) و میکروسکوپ زمینه سیاه(dark field microscope) نیز مقدور است. سیسم های نوری خاصی در تمام این نوع میکروسکوپ ها وجود دارد که به علت ویژگی آنها تباین کافی بین اجزای سلول ایجاد و مشاهده ی سلول های زنده مقدور می شود. استفاده از میکروسکوپ زمینه سیاه برای مشاهده ی حرکت باکتری معمول است، که در این مورد ایجاد تباین بین سلول باکتری زنده و محیط اطرافش مهم است.
• میکروسکوپ الکترونی نگاره (scanning electron microscope) نوع ساده تر میکروسکوپ الکترونی است برای بررسی نمونه با این میکروسکوپ ، نمونه با لایه ای نازک از فلز سنگین به صورت یکنواخت پوشیده شود. الکترون های تابیده شده به سطح نمونه از هیچ ناحیه ای از آن عبور نمی کنند، بلکه در برخورد با سطح نمونه باعث تولید الکترون های بازتابیده می شوند. این الکترون ها تشخیص داده شده و تصویری سه بعدی از سطح نمونه حاصل می گردد. قدرت جداسازی میکروسکوپ الکترونی نگاره حدود nm10 است.
• میکروسکوپ STM و میکروسکوپ پرتو X
• STM حروف اول Scanning Tunneling Microscope است این نوع میکروسکوپ در دهه 1970 اختراع شد و مخترعان آن در سال 1981 جایزه نوبل را دریافت کردند.همانطور که گفته شد طول موج محدودیتی برای میزان R تعیین می کند. نوآوری STM در این است که در آن امواج نوری یا امواج نوع دیگر به کار گرفته نمی شودو هیچ نوع عدسی در آن وجود ندارد.بیان دقیق نحوه کار این میکروسکوپ خارج از توان این مطلب است ولی به طور خلاصه سوندی که نوک آن به اندازه یک اتم است، ویژگی های نمونه را در ابعاد اتمی روبش می کند. STM ساختار سطحی نمونه را بررسی می کند.اما میکروسکوپ مشابه دیگر ویژگی های الکتریکی ، مغناطیسی و یا دمای نمونه را تعیین می کنند. در حال حاضر این میکروسکوپ ها برای نمونه های زیستی و بیشتر برای نمونه های غیر زیستی مورد استفاده قرار می گیرند.
• میکروسکوپ پرتو X نوع دیگری از میکروسکوپ های نوین است که کاربرد بیشتری برای نمونه های زیستی دارد. قدرت جداسازی آن چند صد آنگسترم و ضعیفتر از میکروسکوپ الکترونی است ، اما سلول های زنده با آن قابل بررسی هستند.

ميكروسكوپ ماوراء بنفش ( Ultra Violet Microscope )

ميكروسكوپ ماوراء بنفش يا ميكروسكوپ U.V. كه منبع تغذيه نور ، اشعه U.V. ميباشد. نسبت به ميكروسكوپ نوري معمولي قدرت تفكيك بالاتري داشته چراكه اشعه ماوراء بنفش طول موج كوتاهتري نسبت به نور مرئي دارد . عدسي شيئي بكار رفته در اين ميكروسكوپ از جنس كوارتز ميباشد. بدليل مضر بودن اشعه ماوراء بنفش براي چشم انسان، از تصوير شيء عكسبرداري شده و سپس بر روي صفحه مانيتور قابل مشاهده است ( قدرت تفكيك 600 آنگستروم ).

ميكروسكوپ زمينه سياه ( Dark Field Microscope )

منبع تغذيه نور در اين نوع ميكروسكوپ نور مرئي ميباشد و با ايجاد انكسار نور توسط آئينه هاي محدب و مقعر شيء يا نمونه مورد بررسي، شفاف و نوراني در زمينه سياه ديده ميشود.

اجزاي ميكروسكوپ نوري

1- اجزاي نوري : اجزاي نوري عمدتاً مشتمل بر منبع تغذيه نور و قطعات مرتبط با آن ميباشد ، از قبيل لامپ با ولتاژ 20 وات ، فيلتر تصحيح نور و كندانسور كه كندانسور مشمل بر پنج قطعه است كه نور را تصحيح كرده و بر روي نمونه يا شيء مورد بررسي متمركز ميكند:
1 – فيلتر رنگي ( تصحيح نور ) 2 – ديافراگم كه حجم نور را تنظيم ميكند
3 – دو عدد عدسي محدب 4 – پيچ نگهدارنده كندانسور 5 - پيچ تنظيم ديافراگم

اجزاي مكانيكي :

1 – پايه ( Base ) : كليه قطعات ميكروسكوپ بر روي پايه مستقر ميباشد . در برخي از مدلهاي ميكروسكوپ نوري منبع نور ، فيوز و كابل برق در پايه تعبيه ميگردد .
2 – دسته ( Handle ) : جهت حمل و نقل ميكروسكوپ از دسته استفاده ميشود . نكته قابل توجه آنكه به هنگام جابجايي ميكروسكوپ آن را روي ميز كار نمي كشيم .
3 – لوله ميكروسكوپ ( Barrel ): مشتمل بر عدسي شيئي ( Ocular lens ) و عدسي چشمي (Objective lens) كه با بزرگنــمائي هاي مختلف طراحي مي شوند. عــدسي شيـئي داراي بزرگنمائي هاي X4 ، X10 ،X40 ، X60 و X100 و عدسي چشمي داراي بزرگنمائي هاي X10 ، X15 ، X18 ميباشد كه بسته به نوع ميكروسكوپ متفاوت است. عدسي شيئي معمولاً از چندين عدسي محدب كه در آن تعبيه شده است تشكيل ميگردد.
4 - صفحه گردان يا متحرك ( Revolver ) : عدسيهاي شيئي بر روي اين صفحه قرار ميگيرند و با چرخاندن آن موقعيت عدسيهاي شيئي تغيير ميكند.
5 - پيچ حركات تند ( Macrometrique ) : اين پيچ بر روي دسته تعبيه شده است و باعث ميگردد كه صفحه پلاتين با سرعت بيشتري در جهت عمودي جابجا شود.
6 – پيچ حركات كند ( Micrometrique ) : اين پيچ بر روي پيچ حركات تند قرار داد و صفحه پلاتين را در جهت عمودي و درحد ميكرون جابجا ميكند .
7 – صفحه پلاتين ( Platine plate ) : صفحه اي است كه نمونه مورد نظر روي آن قرار ميگيرد و در جهت طول و عرض داراي دو خط كش مدرج ميباشد كه جهت ثبت و يادداشت مكان يك نمونه خاص بكار ميرود .
8 – پيچ طول و عرض : اين پيچ زير صفحه پلاتين قرار دارد كه آن را در جهت طول و عرض جابجا ميكند .
بزرگنمائي يك ميكروسكوپ حاصل ضرب بزرگنمائي عدسي شيئي در بزرگنمائي عدسي چشمي ميباشد .
+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:45  توسط سید مرتضی  | 

میکروسکوپ نوری روبش میدان نزدیک

مقدمه

مطالعه مواد و ساختارها در اندازه‌های میکرو و نانو نیاز به میکروسکوپ‌های با قدرت تفکیک بالا دارد، که به دلیل محدودیت پراش حاکم بر میکروسکوپ‌های کلاسیک که در آن از عدسی‌ها استفاده می‌شود، دستیابی به این تفکیک با استفاده از این نسل از میکروسکوپ‌ها امکان پذیر نیست. در راستای دستیابی به این هدف میکروسکوپ‌های روبشی – پیمایشی ساخته شدند، که در آنها با بررسی نقطه به نقطه جسم و یا سطح مورد نظر و جمع آوری اطلاعات آنها و تحلیل این داده‌ها می‌توان به مورفولوژی و خواص سطح نمونه مورد نظر دست یافت[۱].

ساخت این نسل از میکروسکوپ‌ها با ساخت میکروسکوپ الکترونی آغاز گردید و به مرور زمان نمونه‌های کاملتر و یا جدید تری از این گروه از میکروسکوپ‌ها ساخته شدند که هر یک برای مصارف خاصی مورد استفاده قرار می‌گیرد. با وجود دقت بالای این میکروسکوپ‌ها مطالعه برخی از نمونه‌ها به‌وسیله این نوع از میکروسکوپ‌ها که عمدتاً دارای ساختاری شبیه میکروسکوپ‌های الکترونی دارند به علل متعدد ممکن نیست. از جمله اینکه این میکروسکوپ‌ها، به استثنا برخی از آنها، نیاز به آماده سازی نمونه برای مطالعه توسط میکروسکوپ دارند که این امر ممکن است مشخصات نمونه را دچار دگرگونی کند و یا آن را در مواردی مثل نمونه‌های زنده و زیستی از حالت زنده بودن خارج کند. عللی از این دست و پیشرفت علم نورشناخت و ساخت لیزر و فیبرهای نوری باعث شد تا میکروسکوپ‌های نوری زاده شوند که برخی از این معایب را مرتفع ساختند.

همانگونه که بیان شد این دسته از میکروسکوپ‌ها نیز به میکروسکوپ‌های روبشی ـ پیمایشی تعلق دارند و بنابراین نیاز به نوک‌های تیزی برای تاباندن نور به سطح نمونه و جمع آوری آن به منظور دستیابی به اطلاعات نمونه دارند. این نوک معمولاً از فیبرهای نوری که ساخته می‌شود. ساخت این نوکها با معمولاً با دو روش "گرما-کششی" و "تراش شیمیایی" انجام می‌شود.

روش کار

کاربردها

همانگونه که در بالا بیان شد کاربرد عمده این میکروسکوپها بیشتر در مطالعه نمونه‌های زنده می‌باشد

+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:40  توسط سید مرتضی  | 

میکروسکوپ تونلی پویشی

میکروسکوپ تونلی روبشی (به انگلیسی: STM:Scanning tunneling microscope)‏ گونه‌ای میکروسکوپ پراب روبشی است که براساس روبش سطح رسانا به‌وسیلهٔ نوک بسیار باریک (در حد چند نانومتر ) و تغییر در میزان جریان عبوری برحسب فاصله کار می‌کند. با این میکروسکوپ می‌توان نحوه آرایش اتمها در سطح شبکه را به تصویر کشید. به عبارت دیگر تصویر ایجاد شده نشان دهنده آرایش فضایی نوار رسانش فلز یا نیمه هادی است.

تونل الکترون‌ها بین نوک و نمونه

جریان در این گونه میکروسکوپ مستقیم (DC) است و جریان بصورت نمایی با فاصله نوک-نمونه رابطه دارد

+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:39  توسط سید مرتضی  | 

میکروسکوپ نیروی اتمی

میکروسکوپ نیروی اتمی(م.ن.ا)*[۱] یا میکروسکوپ نیروی پویشی*[۲] در سال ۱۹۸۶ توسط کوئِیْت، بنینگ و گربر*[۳] اختراع شد.

مانند تمام میکروسکوپ‌های پراب پویشی*[۴] دیگر، م.ن.ا از یک پراب (probe) تیز که بر روی سطح نمونهٔ تحت بررسی حرکت می‌کند، استفاده می‌کند.

در مورد م.ن.ا، نوکی*[۵] بر روی کانتی‌لیور (اهرم) وجود دارد که در اثر نیروی بین نمونه و نوک خم می‌شود. عکس شماره ۱ طرز کار یک م.ن.ا را نشان می‌دهد.

شکل شماره ۱ - ساختمان شماتیک یک میکروسکوپ نیروی اتمی

با خم شدن کانتی‌لیور، انعکاس نور لیزر بر روی آشکارسازنوری*[۶] جابجا می‌شود. بدین ترتیب می‌توان جابجایی نوک کانتی‌لیور را اندازه‌گیری کرد. از آنجایی که کانتی‌لیور در جابجایی‌های کوچک از قانون هوک پیروی می‌کند، از روی جابجایی کانتی‌لیور می‌توان نیروی برهم‌کنش بین نوک و سطح نمونه را بدست آورد. و از روی نیروی بین اتم‌های سطح نمونه و پراب، می‌توان فاصلهٔ بین نوک و سطح نمونه، یا همان ارتفاع آن قسمت از نمونه را بدست آورد.

حرکت پراب بر روی نمونه توسط دستگاه موقعیت‌یاب بسیار دقیقی انجام می‌شود که از سرامیک‌های پیزوالکتریک ساخته می‌شود. این پویشگر توانایی حرکت در مقیاس زیر آنگستروم را دارد.

شکل ۲ یکی از عکس‌های بدست آمده توسط م.ن.ا را نشان می‌دهد.

شکل شماره ۲- توپوگرافی سطحی یک شیشه - اندازه: ۲۰×۲۰ میکرومتر، بازهٔ ارتفاع: ۴۲۰ میکرومتر

 

حالت‌های کارکرد [ویرایش]

نوک کانتی‌لیور
حالت تماسی
در این حالت نوک میکروسکوپ با نمونه در تماس ضعیفی بوده و تصویرسازی با اندازه‌گیری انحراف نوک (بوسیله نیروی دافعه بین نوک و نمونه)انجام می‌شود.
حالت بدون تماس
در این حالت تماسی بین نوک میکروسکوپ و نمونه وجود ندارد و تصویر سازی از نیروی جاذبهٔ بین نوک و نمونه انجام می‌شود.
حالت تماس متناوب (ضربه‌ای)
این حالت نیز مانند حالت بدون تماس است با این تفاوت که در حالت تماس متناوب نوک کانتی‌لیور مرتعش به آرامی با نمونه برخورد می‌کند. در این روش، تصویرسازی با استفاده از دامنهٔ ارتعاش کانتی‌لیور انجام می‌شود.
شکل شماره ۳ - منحنی نیرو-فاصله

شکل ۳ یک منحنی شماتیک نیرو-فاصله را برای م.ن.ا نشان می‌دهد. در فاصلهٔ دور از نمونه، کانتی‌لیور(تیر یکسر گیردار) توسط نیروی بین‌اتمی جذب نمی‌شود و در حالت تعادل آزاد خود است. اما هنگامی که کانتی‌لیور به سطح نمونه نزدیک می‌شود، نیروهای جاذبه کانتی‌لیور را به سمت نمونه جذب می‌کنند. هنگامی که نوک با سطح در تماس است، نیروهای دافعه غالب بوده و کانتی‌لبور را دور می‌کنند. خطوط پررنگ دامنهٔ کار معمول م.ن.اها را در حالت‌های تماسی و بدون تماس نشان می‌دهند. پیکان افقی دراز، دامنهٔ معمول تماس متناوب را نشان می‌دهد.

ساختار CD

مزایا و معایب

  • مزایا
    • سرعت بالا
    • سادگی تهیهٔ نمونه
    • اطلاعات دقیق ارتفاع
    • قابلیت کار در هوا، خلا و مایعات (بر خلاف میکروسکوپ‌های الکترونی)
    • قابلیت مطالعهٔ سیستم‌های زیستی زنده
  • معایب
    • بازهٔ مطالعهٔ عمودی محدود
    • بازهٔ بزرگنمایی محدود
    • وابستگی اطلاعات بدست آمده به نوع نوک میکروسکوپ
    • امکان آسیب دیدن نوک میکروسکوپ یا نمونه
+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:38  توسط سید مرتضی  | 

میکروسکوپ نوری

میکروسکوپ نوری یا ریزنمای نوری را آنتونی وان لیوون هوک در سدهٔ ۱۷ اختراع کرد. این وسیله با بزرگنمائی‌های متفاوت برای بررسی موجودات و ساختار موادی که با چشم غیر مسلح قابل بررسی نیستند کاربرد دارد. ساختمان میکروسکوپ نوری شامل عدسی چشمی و عدسی شیئ، دسته یا بدنه صفحه چرخان، صفحه میکروسکوپ، دیافراگم، منبع نور، گیره‌های صفحه، پیچ ماکرومتری، پیچ میکرومتری و پایه می‌باشد
+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:34  توسط سید مرتضی  | 

میکروسکوپ الکترونی عبوری

تاریخچه

لوئیس دو بروگلی در سال ۱۹۲۵ برای اولین بار تئوری خصوصیات موجی الکترونها که طول موجی کمتر از نور مرئی دارند را ارائه کرد. در سال ۱۹۲۷ دیویسون و گرمر و همچنین تامپسون و رید بطور مستقل آزمایشات کلاسیک تفرق الکترونی را انجام دادند که نشان‌دهندهٔ طبیعت موجی الکترون‌ها بود. در سال ۱۹۳۲ روسکا و نول اولین بار ایدهٔ میکروسکوپ الکترونی را مطرح کردند. در سال ۱۹۳۶ اولین میکروسکوپ الکترونی عبوری توسط شرکت Metropolitian-Vickers در انگلستان ساخته شد. شکل اصلی میکروسکوپ الکترونی ، میکروسکوپ انتقال الکترونی از یک پرتو الکترونی ولتاژ بالا برای ساخت یک تصویراستفاده می کند. الکترون ها بوسیله یک تفنگ الکترونی انتشار می یابند ، که معمولا با یک کاتد ساخته شده از تنگستن رشته ای به عنوان یک منبع الکترون پر شده است . پرتو الکترونی بوسیله یک آند معمولی با ولتاژ kV100+ (40تا 400kV ) شتاب می گیرد با توجه به نوع کاتد ، بوسیله ی عدسی های الکترواستاتیکی و الکترومغناطیسی تمرکز یافته ، و از طریق نمونه که در بخش شفاف به الکترون است انتقال می یابد ، و در نقطه ی خارج از پرتو آن ها پراکنده می شود . هنگامی که از نمونه ظاهر می شود ، پرتو الکترونی اطلاعاتی در مورد ساختار نمونه که بوسیله ی عدسی های هدف سیستم میکروسکوپ بزرگنمایی شده را حمل می نماید . تنوع فضایی در این اطلاعات (تصاویر) ممکن است بوسیله ی طرح تصویر الکترونی بزرگ شده بر روی یک صفحه نمایش فلور سنت پوشش داده شده با فسفر یا ماده ی جرقه زنی مثل سولفید روی مشاهده شود . متناوبا ، تصویر میتواند بوسیله ی نمایش یک فیلم عکسی یا صفحه ای مستقیما رو به پرتو الکترونی ، یا یک فسفر وضوح بالا همراه شده و بوسیله ی سیستم عدسی نوری یا یک فیبر نوری چراغ راهنمایی برای حسگر یک دوربین CCD (دستگاه باردار) ثبت عکسی شود . تصویر بوسیله ی CCD که می تواند آن را در مانیتور یا کامپیوتر نمایش دهد شناسایی می شود . وضوح TEM در درجه ی اول بوسیله ی انحراف کروی محدود می شود ، اما نسل جدید تنظیم کننده های انحراف قادر به غلبه بر بخشی از انحراف کروی برای افزایش وضوح هستند . سخت افزار اصلاح انحراف کروی برای میکروسکوپ انتقال الکترونی با وضوح بالا (HRTEM) اجازه داده است تصاویری با وضوح بالای 5/0آنگستروم (50 پیکومتر) و بزرگنمایی بالای 50 میلیون بار تولید شود. توانایی تعیین موقعیت اتم ها در داخل مواد HRTEM را یک ابزار مهم برای توسعه و تحقیق نانو تکنولوژی ساخته است . یک حالت استفاده مهم TEM پراش الکترون است . مزایای پراش الکترونی روی اشعه یX در بلور شناسی این است که نمونه نیازمند یک تک بلور یا حتی پودر چند بلوری نبوده ، و هم چنین این که تبدیل فوریه بازسازی ساختار شیئ بزرگ شده بطور فیزیکی رخ می دهد و در نتیجه بعد از بدست آوردن تصویر بلوری الگوهای پراش اشعه X آن ها بصورت یک تک بلور یا پودر چند بلوری ، از نیاز به حل مشکل فاز مواجه شده بوسیله ی اشعهX اجتناب می شود . عمده معایب میکروسکوپ انتقال الکترونی این است که نیازمند بخش های بسیار باریک از نمونه ، معمولاً حدود nm 100 می باشد . نمونه های زیستی معمولاً نیازمند ثبوت شیمیایی هستند ، آب از دست داده و جاسازی شده در یک رزین پلیمری برای ایجاد ثبات در آن ها ، به آن ها اجازه تشکیل برشی به اندازه کافی نازک می دهد . بخشی از نمونه های زیستی ، پلیمر های آلی و مواد مشابه ممکن است نیاز ویژه به رنگ آمیزی با برچسب اتم سنگین به منظور دستیابی به کنتراست تصویر مورد نیاز داشته باشند .

نمونه‌ها

عکس میکروسکوپ الکترونی روبشی از یک نمونهٔ آماده شده برای میکروسکوپ الکترونی عبوری که توسط تابش یونی متمرکز نازک شده است. غشای نازک برای بررسی توسط TEM مناسب است ولی با ضخامت حدود ۳۰۰ نانومتر بدون نازک کردن بیشتر برای بررسی توسط میکروسکوپ الکترونی عبوری وضوح بالا مناسب نخواهد بود.
شکل

فقط مواد جامد

اندازه

دیسکی با قطر ۳ میلی‌متر و ضخامت تقریبی ۵ میکرومتر

آماده‌سازی

باید برش‌هایی از نمونه تهیه شده و به کمک الکتروپولیش تا حدی نازک شود که به الکترونها اجازهٔ عبور بدهد.

زمان تقریبی مورد نیاز

۳ تا ۳۰ ساعت برای هر نمونه (بدون احتساب زمان آماده‌سازی)

برخی از کاربردها

محدودیت‌ها

  • فرآیند تهیهٔ نمونه‌ها بسیار زمان‌بر و خسته‌کننده است.
+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:33  توسط سید مرتضی  | 

میکروسکوپ الکترونی روبشی

تاریخچه

نخستین تلاش‌ها در توسعهٔ میکروسکوپ الکترونی روبشی به سال ۱۹۳۵ بازمی‌گردد که نول*[۱] و همکارانش در آلمان پژوهش‌هایی در زمینهٔ پدیده‌های الکترونیک نوری انجام دادند. آرْدِن *[۲] در سال ۱۹۳۸ با اضافه کردن پیچه‌های جاروب‌کننده به یک میکروسکوپ الکترونی عبوری توانست میکروسکوپ الکترونی عبوری-روبشی بسازد.

استفاده از میکروسکوپ SEM برای مطالعهٔ نمونه‌های ضخیم اولین بار توسط زوُرِکین*[۳] و همکارانش در سال ۱۹۴۲ در ایالات متحده گزارش شد. قدرت تفکیک میکروسکوپ‌های اولیه در حدود ۵۰ نانومتر بود. میکروسکوپ الکترونی روبشی بر اساس نحوه تولید باریکه الکترونی در آن به دو نوع Field Emission و Thermoionic Emission تقسیم بندی می‌شود که نوع Fe-SEM دارای بزرگنمایی و حد تفکیک بسیار بالاتری بوده و تصاویری با بزرگنمایی 700 هزار برابر را با آن می توان به دست آورد .

نمونه‌ها

یک بلور برف رنگی شده که به وسیله میکروسکوپ الکترونی روبشی عکس برداری شده‌است.
شکل

هر جامد یا مایعی که فشار بخاری کمتر از ‎۱۰ تور داشته باشد.

اندازه

محدودیت اندازه توسط طراحی میکروسکوپ الکترونی روبشی تعیین می‌شود. معمولاً نمونه‌هایی با اندازهٔ ۱۵ تا ۲۰ سانتی‌متر را می‌توان در میکروسکوپ قرار داد.

آماده‌سازی

تکنیک‌های پولیش و اچ متالوگرافی استاندارد برای مواد هادی الکتریسیته کافی هستند. مواد غیرهادی معمولاً با لایهٔ نازکی از کربن، طلا یا آلیاژهای طلا پوشش داده می‌شوند.

برخی از کاربردها

  • بررسی نمونه‌های آماده شده برای متالوگرافی در بزرگنمایی بسیار بیشتر از میکروسکوپ نوری.
  • بررسی مقاطع شکست و سطوحی که اچ عمیق شده‌اند و مستلزم عمق میدان بسیار بیشتر از میکروسکوپ نوری هستند.
  • ارزیابی گرادیان ترکیب شیمیایی روی سطح نمونه‌ها در فاصله‌ای به کوچکی ۱ میکرومتر

محدودیت

  • کیفیت تصویر سطوح تخت نظیر نمونه‌هایی که پولیش و اچ متالوگرافی شده‌اند، معمولاً در بزرگنمایی کمتر از ۳۰۰ تا ۴۰۰ برابر به خوبی میکروسکوپ نوری نیست.

نحوهٔ کار

در ميکروسکوپ الکتروني روبشي يک پرتو الکتروني به نمونه مي تابد. SEM اصولا براي مطالعه ساختار نمونه­هاي حجيم در سطح يا نزديک به سطح استفاده مي شوند. منبع الکتروني (تفنگ الکتروني) معمولا از نوع انتشار ترميونيکي فيالان يا رشته تنگستني است اما استفاده از منابع انتشار ميدان (FEG) براي قدرت تفکيک بالاتر، افزايش يافته است. معمولا الکترون بينkeV 30-1 شتاب داده مي شوند، سپس دو يا سه عدسي متمرکز کننده پرتو الکتروني را کوچک مي کنند تا حدي که در موقع برخورد با نمونه قطر آن حدودا بين 10-2 نانومتر است.

+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:31  توسط سید مرتضی  | 

میکروسکوپ‌های الکترونی

تاریخچه

میکروسکوپ الکترونی توسط فیزیک‌دان مجارستانی لئو زیلارد اختراع و ثبت شد. با این حال در سال ۱۹۳۱ ، ارنست رسکا فیزیک‌دان آلمانی و ماکس نول مهندس برق نمونه میکروسکوپ الکترونی را با قدرت ۴۰۰ برابر بزرگ‌نمایی ساختند . دستگاه دارای کاربرد عملی بر پایه اصول میکروسکوپ الکترونی بود . دو سال بعد ، در ۱۹۳۳ رسکا یک میکروسکوپ الکترونی با قدرت بزرگ‌نمایی بیش از بزرگ‌نمایی قابل حصول ازیک میکروسکوپ نوری ساخت . به علاوه این رینولد رودنبرگ مدیر علمی زیمنس-شوکرت ورک بود ، که اختراع میکروسکوپ الکترونی را در ۱۹۳۱ثبت کرد . بیماری خانواده مهندس برق را مجبور به ساخت یک میکروسکوپ الکتروستاتیکی کرد ، زیرا او می خواست ویروس فلج اطفال را ببیند . در سال ۱۹۳۲ ارنست لابک از زیمنس و هلسک آن را ساخت و عکس هایی از نمونه اولیه میکروسکوپ الکترونی با استفاده از مفاهیم شرح داده شده دربرنامه های ثبت شده رادنبرگ به دست آورد . ۵ سال بعد (در ۱۹۳۷) شرکت تامین مالی کار ارنست رسکا و بودو بوریس ، و استخدام هلموت روسکا (برادر ارنست) به منظور توسعه برنامه های کاربردی برای میکروسکوپ ، خصوصا با نمونه های زیستی تاسیس شد. همچنین در ۱۹۳۷ مانفرد ون آردن پیشگام ساخت میکروسکوپ اسکن الکترونی شد . نخستین تلاش عملی برای ساخت میکروسکوپ الکترونی در سال ۱۹۳۸ ،در دانشگاه تورنتو ، بدست الی فرانکلین بورتون ودانشجویان سیسیل ، جیمز هیلر، و آلبرت پرباس انجام گرفت و نخستین سری تجاری میکروسکوپ انتقال الکترونی در سال ۱۹۳۹ محصول زیمنس بود . اگرچه همزمان با میکروسکوپ های الکترونی دارای دو میلیون قدرت بزرگنمایی ، به عنوان ابزار علمی هم چنان آن ها بر اساس نمونه ی رسکا باقی ماندند .

قوی‌ترین میکروسکوپ الکترونی

قوی‌ترین میکروسکوپ الکترونی دنیا با نام پیکو در سال ۲۰۰۹ در مدرسه عالی فنی آخن در آلمان ساخته شده و توان نمایش ذراتی به اندازه ۵۰ پیکومتر (پنج صدم نانومتر) و تصاویری از اجزای اتم و حرکت اتم‌ها را دارد. این میکروسکوپ دو برابر دقیق‌تر از میکروسکوپی‌ست که سال قبل در دانشگاه برکلی ساخته شده بود[۱].

+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:30  توسط سید مرتضی  | 

استوانه مدرج يا مزور:

براي اندازه گيري حجم مايعات مختلف.

در قسمت بالاي استوانه عددي با عنوانEXPنمايان است كه نشان دهنده ي ضريب انبساط حرارتي استوانه مدرج ميباشد.اين عدد نشان ميدهد كه با افزايش دما مزور تا چه اندازه اي منبسط ميشود.
هرچه اين عدد كوچك تر باشد اندازه حجم خوانده شده در شرايط دمايي مختلف دقيق تر خواهدبود .

 
 
 
قيف معمولي شيشه اي:

براي هدايت و انتقال مواد به ظرف ديگر.
همچنين با قرار دادن كاغذ صافي داخل قيف ميتوان عمل رسوب گيري را انجام داد
.
 
 
 
 
كروزه چيني:

براي تكليس مواد در دماهاي بسيار پايين
 
شيشه شوي:

براي شست و شوي لوله و وسايل آزمايشگاهي
 
دسيكاتور:

براي خشك كردن رسوبات
 
 
 
بشر:

براي حرارت دادن محلول ها روي شعله ي مستقيم
 
 
شيشه ساعت:

براي توزين موادي كه روي كاغذ صافي اثر ميگذارند.
 
انبرك يا پنس:

براي برداشتن فلزات بسيار فعالي مانند سديم و پتاسيم
 
هاون چيني:

براي نرم كردن مواد جامد
 
سمپلر:(نمونه بردار)

ميتواند از 5تا100ميكروليتر باشد.
+ نوشته شده در  جمعه بیست و سوم فروردین 1392ساعت 1:28  توسط سید مرتضی  |